Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.485
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731852

Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mitogen-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Animals , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism , raf Kinases/genetics , Mutation
2.
Mol Biol Rep ; 51(1): 602, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698158

BACKGROUND: Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress. METHODS AND RESULTS: Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR). CONCLUSION: In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49-CoMAPKK4-CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.


Camellia , Cold-Shock Response , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Cold-Shock Response/genetics , Camellia/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/genetics , Cold Temperature , Transcriptome/genetics , Multigene Family , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Gene Expression Profiling/methods , Plant Leaves/genetics
3.
Sci Adv ; 10(18): eadk4946, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691597

This phase 2a trial investigated the efficacy of NFX-179 Topical Gel, a metabolically labile MEK inhibitor, in the treatment of cutaneous neurofibromas (cNFs) in neurofibromatosis type 1. Forty-eight participants were randomized to four treatment arms: NFX-179 Topical Gel 0.05%, 0.15%, and 0.5% or vehicle applied once daily to five target cNFs for 28 days. Treatment with NFX-179 Topical Gel resulted in a dose-dependent reduction in p-ERK levels in cNFs at day 28, with a 47% decrease in the 0.5% NFX-179 group compared to the vehicle (P = 0.0001). No local or systemic toxicities were observed during the treatment period, and systemic concentrations of NFX-179 remained below 1 ng/ml. In addition, 20% of cNFs treated with 0.5% NFX-179 Topical Gel showed a ≥50% reduction in volume compared to 6% in the vehicle group by ruler measurement with calculated volume (P = 0.021). Thus, NFX-179 Topical Gel demonstrated significant inhibition of MEK in cNF with excellent safety and potential therapeutic benefit.


Neurofibromatosis 1 , Protein Kinase Inhibitors , Skin Neoplasms , Humans , Neurofibromatosis 1/drug therapy , Female , Male , Adult , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/adverse effects , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Neurofibroma/drug therapy , Neurofibroma/pathology , Neurofibroma/metabolism , Young Adult , Adolescent , Treatment Outcome , Administration, Topical , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism
4.
Mol Med ; 30(1): 47, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594640

BACKGROUND: RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD: Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS: Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION: This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.


Noonan Syndrome , Zebrafish , Animals , Humans , Adolescent , Zebrafish/genetics , Zebrafish/metabolism , Fluorescence Resonance Energy Transfer , Noonan Syndrome/genetics , Mutation , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism
5.
Eur J Pharmacol ; 971: 176548, 2024 May 15.
Article En | MEDLINE | ID: mdl-38570080

OBJECTIVES: Thrombocytopenia is a disease in which the number of platelets in the peripheral blood decreases. It can be caused by multiple genetic factors, and numerous challenges are associated with its treatment. In this study, the effects of alnustone on megakaryocytes and platelets were investigated, with the aim of developing a new therapeutic approach for thrombocytopenia. METHODS: Random forest algorithm was used to establish a drug screening model, and alnustone was identified as a natural active compound that could promote megakaryocyte differentiation. The effect of alnustone on megakaryocyte activity was determined using cell counting kit-8. The effect of alnustone on megakaryocyte differentiation was determined using flow cytometry, Giemsa staining, and phalloidin staining. A mouse model of thrombocytopenia was established by exposing mice to X-rays at 4 Gy and was used to test the bioactivity of alnustone in vivo. The effect of alnustone on platelet production was determined using zebrafish. Network pharmacology was used to predict targets and signaling pathways. Western blotting and immunofluorescence staining determined the expression levels of proteins. RESULTS: Alnustone promoted the differentiation and maturation of megakaryocytes in vitro and restored platelet production in thrombocytopenic mice and zebrafish. Network pharmacology and western blotting showed that alnustone promoted the expression of interleukin-17A and enhanced its interaction with its receptor, and thereby regulated downstream MEK/ERK signaling and promoted megakaryocyte differentiation. CONCLUSIONS: Alnustone can promote megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway and thus provides a new therapeutic strategy for the treatment of thrombocytopenia.


Megakaryocytes , Thrombocytopenia , Mice , Animals , Megakaryocytes/metabolism , Zebrafish/metabolism , Interleukin-17/metabolism , Blood Platelets , Thrombocytopenia/drug therapy , Thrombocytopenia/metabolism , Signal Transduction , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology
6.
Curr Pharm Biotechnol ; 25(4): 499-509, 2024.
Article En | MEDLINE | ID: mdl-38572608

Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently.

Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation.

Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot.

Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1.

Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway.

.


Drugs, Chinese Herbal , Infertility , Salpingitis , Humans , Female , Rats , Animals , Salpingitis/complications , Salpingitis/metabolism , Salpingitis/pathology , MAP Kinase Signaling System , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Escherichia coli/metabolism , Network Pharmacology , Infertility/complications , Signal Transduction , Inflammation/drug therapy , ErbB Receptors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
7.
Int J Hyperthermia ; 41(1): 2335199, 2024.
Article En | MEDLINE | ID: mdl-38565204

PURPOSE: c-Jun N-terminal kinases (JNKs) comprise a subfamily of mitogen-activated protein kinases (MAPKs). The JNK group is known to be activated by a variety of stimuli. However, the molecular mechanism underlying heat-induced JNK activation is largely unknown. The aim of this study was to clarify how JNK activity is stimulated by heat. METHODS AND MATERIALS: The expression levels of various MAPK members in HeLa cells, with or without hyperthermia treatment, were evaluated via western blotting. The kinase activity of MAPK members was assessed through in vitro kinase assays. Cell death was assessed in the absence or presence of siRNAs targeting MAPK-related members. RESULTS: Hyperthermia decreased the levels of MAP3Ks, such as ASK1 and MLK3 which are JNK kinase kinase members, but not those of the downstream MAP2K/SEK1 and MAPK/JNK. Despite the reduced or transient phosphorylation of ASK1, MLK3, or SEK1, downstream JNK was phosphorylated in a temperature-dependent manner. In vitro kinase assays demonstrated that heat did not directly stimulate SEK1 or JNK. However, the expression levels of DUSP16, a JNK phosphatase, were decreased upon hyperthermia treatment. DUSP16 knockdown enhanced the heat-induced activation of ASK1-SEK1-JNK pathway and apoptosis. CONCLUSION: JNK was activated in a temperature-dependent manner despite reduced or transient phosphorylation of the upstream MAP3K and MAP2K. Hyperthermia-induced degradation of DUSP16 may induce activation of the ASK1-SEK1-JNK pathway and subsequent apoptosis.


Hyperthermia, Induced , MAP Kinase Signaling System , Humans , HeLa Cells , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Apoptosis/physiology
8.
Bioorg Med Chem ; 102: 117674, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38457912

Controlling RAS mutant cancer progression remains a significant challenge in developing anticancer drugs. Whereas Ras G12C-covalent binders have received clinical approval, the emergence of further mutations, along with the activation of Ras-related proteins and signals, has led to resistance to Ras binders. To discover novel compounds to overcome this bottleneck, we focused on the concurrent and sustained blocking of two major signaling pathways downstream of Ras. To this end, we synthesized 25 drug-drug conjugates (DDCs) by combining the MEK inhibitor trametinib with Akt inhibitors using seven types of linkers with structural diversity. The DDCs were evaluated for their cell permeability/accumulation and ability to inhibit proliferation in RAS-mutant cell lines. A representative DDC was further evaluated for its effects on signaling proteins, induction of apoptosis-related proteins, and the stability of hepatic metabolic enzymes. These in vitro studies identified a series of DDCs, especially those containing a furan-based linker, with promising properties as agents for treating RAS-mutant cancers. Additionally, in vivo experiments in mice using the two selected DDCs revealed prolonged half-lives and anticancer efficacies comparable to those of trametinib. The PK profiles of trametinib and the Akt inhibitor were unified through the DDC formation. The DDCs developed in this study have potential as drug candidates for the broad inhibition of RAS-mutant cancers.


Antineoplastic Agents , Neoplasms , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Angiogenesis Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor
9.
Nat Commun ; 15(1): 2551, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514606

Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing ßTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/ß-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.


Colorectal Neoplasms , MAP Kinase Signaling System , Humans , Animals , Mice , Phosphorylation , Cell Transformation, Neoplastic/genetics , Carcinogenesis , Wnt Signaling Pathway , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Colorectal Neoplasms/pathology , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Adaptor Proteins, Signal Transducing/metabolism
10.
Plant Signal Behav ; 19(1): 2326238, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38493505

Mitogen-activated protein kinase (MPK) cascades are essential signal transduction components that control a variety of cellular responses in all eukaryotes. MPKs convert extracellular stimuli into cellular responses by the phosphorylation of downstream substrates. Although MPK cascades are predicted to be very complex, only limited numbers of MPK substrates have been identified in plants. Here, we used the kinase client (KiC) assay to identify novel substrates of MPK3 and MPK6. Recombinant MPK3 or MPK6 were tested against a large synthetic peptide library representing in vivo phosphorylation sites, and phosphorylated peptides were identified by high-resolution tandem mass spectrometry. From this screen, we identified 23 and 21 putative client peptides of MPK3 and MPK6, respectively. To verify the phosphorylation of putative client peptides, we performed in vitro kinase assay with recombinant fusion proteins of isolated client peptides. We found that 13 and 9 recombinant proteins were phosphorylated by MPK3 and MPK6. Among them, 11 proteins were proven to be the novel substrates of two MPKs. This study suggests that the KiC assay is a useful method to identify new substrates of MPKs.


Arabidopsis Proteins , Arabidopsis , Humans , Mitogen-Activated Protein Kinases/metabolism , Arabidopsis/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Arabidopsis Proteins/metabolism , Phosphorylation , Peptides/metabolism , Gene Expression Regulation, Plant
11.
J Colloid Interface Sci ; 665: 477-490, 2024 Jul.
Article En | MEDLINE | ID: mdl-38429120

Clinical pancreatic ductal adenocarcinoma (PDAC) treatment is severely limited by lack of effective KRAS suppression strategies. To address this dilemma, a reactive oxygen species (ROS)-responsive and PDAC-targeted nanodrug named Z/B-PLS was constructed to confront KRAS through dual-blockade of its downstream PI3K/AKT/mTOR and RAF/MEK/ERK for enhanced PDAC treatment. Specifically, photosensitizer zinc phthalocyanine (ZnPc) and PI3K/mTOR inhibitor BEZ235 (BEZ) were co-loaded into PLS which was constructed by click chemistry conjugating MEK inhibitor selumetinib (SEL) to low molecular weight heparin with ROS-responsive oxalate bond. The BEZ and SEL blocked PI3K/AKT/mTOR and RAF/MEK/ERK respectively to remodel glycolysis and non-canonical glutamine metabolism. ZnPc mediated photodynamic therapy (PDT) could enhance drug release through ROS generation, further facilitating KRAS downstream dual-blockade to create treatment-promoting drug delivery-therapeutic positive feedback. Benefiting from this broad metabolic modulation cascade, the metabolic symbiosis between normoxic and hypoxic tumor cells was also cut off simultaneously and effective tumor vascular normalization effects could be achieved. As a result, PDT was dramatically promoted through glycolysis-non-canonical glutamine dual-metabolism regulation, achieving complete elimination of tumors in vivo. Above all, this study achieved effective multidimensional metabolic modulation based on integrated smart nanodrug delivery, helping overcome the therapeutic challenges posed by KRAS mutations of PDAC.


Carcinoma, Pancreatic Ductal , Nanoparticles , Pancreatic Neoplasms , Humans , Glutamine/pharmacology , Glutamine/metabolism , Glutamine/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/therapeutic use , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/therapeutic use , Reactive Oxygen Species/metabolism , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/therapeutic use , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Glycolysis , Phototherapy , Cell Line, Tumor
12.
FEBS Open Bio ; 14(4): 695-720, 2024 Apr.
Article En | MEDLINE | ID: mdl-38425293

The peptide mimetic, NC114, is a promising anticancer compound that specifically kills colorectal cancer cells without affecting normal colon epithelial cells. In our previous study, we observed that NC114 inhibited the Wnt/ß-catenin pathway, with significant downregulation of both Ser 675-phosphorylated ß-catenin and its target genes, cyclin D1 and survivin. However, the molecular mechanism responsible for its cytotoxic effect has not yet been fully characterized. In the present study, we demonstrated that NC114 prevented cell cycle progression from S to G2/M phase by downregulating cell cycle-related gene expression, and also induced growth arrest in SW480 and HCT-116 colorectal cancer cells. A novel covariation network analysis combined with transcriptome analysis revealed a series of signaling cascades affected by NC114 treatment, and identified protein kinase C-δ (PKCδ) and forkhead box protein M1 (FOXM1) as important regulatory factors for NC114-induced growth arrest. NC114 treatment inhibits the activation of PKCδ and its kinase activity, which suppresses MEK/ERK signaling. Attenuated MEK/ERK signaling then results in a reduction in FOXM1 phosphorylation and subsequent nuclear translocation of FOXM1 and ß-catenin. Consequently, formation of a T-cell factor-4 (TCF4)/ß-catenin transcription complex in the nucleus is inhibited and transcription of its target genes, such as cell cycle-related genes, is downregulated. The efficacy of NC114 on tumor growth was confirmed in a xenograft model. Collectively, elucidation of the mechanism by which NC114 induces growth arrest in colorectal cancer cells should provide a novel therapeutic strategy for colorectal cancer treatment.


Colorectal Neoplasms , Forkhead Box Protein M1 , Humans , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , beta Catenin/metabolism , Wnt Signaling Pathway/genetics , Colorectal Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
13.
Am J Pathol ; 194(5): 708-720, 2024 May.
Article En | MEDLINE | ID: mdl-38320628

Psoriasis is a chronic inflammatory skin disease characterized by the activation of keratinocytes and the infiltration of immune cells. Overexpression of the transcription factor LIM-domain only protein 4 (LMO4) promoted by IL-23 has critical roles in regulating the proliferation and differentiation of psoriatic keratinocytes. IL-6, an autocrine cytokine in psoriatic epidermis, is a key mediator of IL-23/T helper 17-driven cutaneous inflammation. However, little is known about how IL-6 regulates the up-regulation of LMO4 expression in psoriatic lesions. In this study, human immortalized keratinocyte cells, clinical biopsy specimens, and an animal model of psoriasis induced by imiquimod cream were used to investigate the role of IL-6 in the regulation of keratinocyte proliferation and differentiation. Psoriatic epidermis showed abnormal expression of IL-6 and LMO4. IL-6 up-regulated the expression of LMO4 and promoted keratinocyte proliferation and differentiation. Furthermore, in vitro and in vivo studies showed that IL-6 up-regulates LMO4 expression by activating the mitogen-activated extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK)/NF-κB signaling pathway. These results suggest that IL-6 can activate the NF-κB signaling pathway, up-regulate the expression of LMO4, lead to abnormal proliferation and differentiation of keratinocytes, and promote the occurrence and development of psoriasis.


Extracellular Signal-Regulated MAP Kinases , Psoriasis , Animals , Humans , Adaptor Proteins, Signal Transducing/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-23/adverse effects , Interleukin-23/metabolism , Interleukin-6/metabolism , Keratinocytes/pathology , LIM Domain Proteins/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , NF-kappa B/metabolism , Psoriasis/pathology
14.
Sci Rep ; 14(1): 4985, 2024 02 29.
Article En | MEDLINE | ID: mdl-38424293

Cysteine protease inhibitor 1 (CST1) is a cystatin superfamily protein that inhibits cysteine protease activity and is reported to be involved in the development of many malignancies. Mitochondrial oxidative phosphorylation (OXPHOS) also plays an important role in cancer cell growth regulation. However, the relationship and roles of CST1 and OXPHOS in esophageal squamous cell carcinoma (ESCC) remains unclear. In our pilot study, CST1 was shown the potential of promoting ESCC migration and invasion by the activation of MEK/ERK pathway. Transcriptome sequencing analysis revealed that CST1 is closely associated with OXPHOS. Based on a real-time ATP rate assay, mitochondrial complex I enzyme activity assay, immunofluorescence, co-immunoprecipitation, and addition of the OXPHOS inhibitor Rotenone and MEK/ERK inhibitor PD98059, we determined that CST1 affects mitochondrial complex I enzyme activity by interacting with the GRIM19 protein to elevate OXPHOS levels, and a reciprocal regulatory relationship exists between OXPHOS and the MEK/ERK pathway in ESCC cells. Finally, an in vivo study demonstrated the potential of CST1 in ESCC metastasis through regulation of the OXPHOS and MEK/ERK pathways. This study is the first to reveal the oncogenic role of CST1 in ESCC development by enhancing mitochondrial respiratory chain complex I activity to activate the OXPHOS/MEK/ERK axis, and then promote ESCC metastasis, suggesting that CST1/OXPHOS is a promising target for ESCC treatment.


Diazomethane/analogs & derivatives , Dipeptides , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/pathology , Oxidative Phosphorylation , Pilot Projects , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Cell Movement
15.
J Cell Mol Med ; 28(4): e18143, 2024 Feb.
Article En | MEDLINE | ID: mdl-38333908

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Nerve Growth Factor , Osteogenesis , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Dental Pulp , Stem Cells/metabolism , Cell Differentiation , Cells, Cultured , RNA, Small Interfering/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Proliferation
16.
Zhongguo Zhong Yao Za Zhi ; 49(1): 216-223, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38403354

This study aims to investigate the effect of Buyang Huanwu Decoction on blood flow recovery and arteriogenesis after hindlimb ischemia in mice via the platelet-derived growth factor(PDGF) signaling pathway. Forty C57BL/6 mice were randomized into model(clean water, 10 mL·kg~(-1)·d~(-1)), beraprost sodium(positive control, 18 µg·kg~(-1)·d~(-1)), and low-, medium-, and high-dose(10, 20, and 40 g·kg~(-1)·d~(-1), respectively) Buyang Huanwu Decoction groups(n=8). The hindlimb ischemia model was established by femoral artery ligation. The mice were administrated with corresponding agents by gavage daily for 14 days after ligation. For laser Doppler perfusion imaging, the mice were anesthetized and measured under a Periscan PSI imager. The density of capillary and arterio-le in the ischemic gastrocnemius was measured using immunofluorescence staining of the frozen tissue sections. Western blot was employed to determine the expression of PDGF subunit B(PDGFB), phosphorylated mitogen extracellular kinase(p-MEK), MEK, phosphorylated extracellular signal-regulated kinase(p-ERK), and ERK. Real-time PCR was employed to determine the mRNA level of PDGFB. The Buyang Huanwu Decoction-containing serum was used to treat the vascular smooth muscle cells(VSMCs) in hypoxia at doses of 10% and 20%. The proliferation and migration of VSMCs was assessed in vitro. The results showed that compared with the model group, beraprost sodium and Buyang Huanwu Decoction enhanced the blood flow recovery, increased the capillary and arteriole density, and up-regulated the protein levels of PDGFB, p-MEK, p-ERK, and mRNA levels of PDGFB, with the medium-dose Buyang Huanwu Decoction demonstrating the most significant effect. The 10% Buyang Huanwu Decoction-containing serum enhanced the proliferation and migration of VSMCs. Our findings demonstrate that Buyang Huanwu Decoction up-regulates PDGFB transcription and activates PDGF signaling pathway to promote arteriogenesis and blood flow recovery in ischemic gastrocnemius.


Drugs, Chinese Herbal , Rats , Mice , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-sis , Mice, Inbred C57BL , Drugs, Chinese Herbal/therapeutic use , Signal Transduction , Ischemia/drug therapy , Hindlimb/metabolism , RNA, Messenger/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
17.
Plant Cell ; 36(4): 963-986, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38301274

Soybean cyst nematode (SCN; Heterodera glycines Ichinohe), one of the most devastating soybean (Glycine max) pathogens, causes significant yield loss in soybean production. Nematode infection triggers plant defense responses; however, the components involved in the upstream signaling cascade remain largely unknown. In this study, we established that a mitogen-activated protein kinase (MAPK) signaling module, activated by nematode infection or wounding, is crucial for soybeans to establish SCN resistance. GmMPK3 and GmMPK6 directly interact with CDG1-LIKE1 (GmCDL1), a member of the receptor-like cytoplasmic kinase (RLCK) subfamily VII. These kinases phosphorylate GmCDL1 at Thr-372 to prevent its proteasome-mediated degradation. Functional analysis demonstrated that GmCDL1 positively regulates immune responses and promotes SCN resistance in soybeans. GmMPK3-mediated and GmMPK6-mediated phosphorylation of GmCDL1 enhances GmMPK3 and GmMPK6 activation and soybean disease resistance, representing a positive feedback mechanism. Additionally, 2 L-type lectin receptor kinases, GmLecRK02g and GmLecRK08g, associate with GmCDL1 to initiate downstream immune signaling. Notably, our study also unveils the potential involvement of GmLecRKs and GmCDL1 in countering other soybean pathogens beyond nematodes. Taken together, our findings reveal the pivotal role of the GmLecRKs-GmCDL1-MAPK regulatory module in triggering soybean basal immune responses.


Nematode Infections , Tylenchoidea , Animals , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Glycine max/genetics , MAP Kinase Signaling System , Signal Transduction/genetics , Plant Diseases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism
18.
Nat Commun ; 15(1): 1393, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360927

Patients affected by neurofibromatosis type 1 (NF1) frequently show muscle weakness with unknown etiology. Here we show that, in mice, Neurofibromin 1 (Nf1) is not required in muscle fibers, but specifically in early postnatal myogenic progenitors (MPs), where Nf1 loss led to cell cycle exit and differentiation blockade, depleting the MP pool resulting in reduced myonuclear accretion as well as reduced muscle stem cell numbers. This was caused by precocious induction of stem cell quiescence coupled to metabolic reprogramming of MPs impinging on glycolytic shutdown, which was conserved in muscle fibers. We show that a Mek/Erk/NOS pathway hypersensitizes Nf1-deficient MPs to Notch signaling, consequently, early postnatal Notch pathway inhibition ameliorated premature quiescence, metabolic reprogramming and muscle growth. This reveals an unexpected role of Ras/Mek/Erk signaling supporting postnatal MP quiescence in concert with Notch signaling, which is controlled by Nf1 safeguarding coordinated muscle growth and muscle stem cell pool establishment. Furthermore, our data suggest transmission of metabolic reprogramming across cellular differentiation, affecting fiber metabolism and function in NF1.


Neurofibromatosis 1 , Neurofibromin 1 , Mice , Humans , Animals , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Signal Transduction/physiology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism
19.
Cell Death Dis ; 15(2): 173, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38409090

Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mutation/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Line, Tumor
20.
J Med Chem ; 67(4): 3167-3189, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38315032

Mitogen-activated protein kinase-interacting protein kinases (MNKs) and phosphorylate eukaryotic initiation factor 4E (p-eIF4E) play a critical role in regulating mRNA translation and protein synthesis associated with the development of cancer, metabolism, and inflammation. This study undertakes the modification of a 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)pyridine structure, leading to the discovery of 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridine (D25) as a potent and selective MNK inhibitor. D25 demonstrated inhibitory activity, with IC50 values of 120.6 nM for MNK1 and 134.7 nM for MNK2, showing exceptional selectivity. D25 inhibited the expression of pro-inflammation cytokines in RAW264.7 cells, such as inducible NO synthase, cyclooxygenase-2, and interleukin-6 (IL-6). In the lipopolysaccharide-induced sepsis mouse model, D25 significantly reduced p-eIF4E in spleen tissue and decreased the expression of tumor necrosis factor α, interleukin-1ß, and IL-6, and it also reduced the production of reactive oxygen species, resulting in improved organ injury caused by inflammation. This suggests that D25 may provide a potential treatment for sepsis and sepsis-associated acute spleen injury.


Protein Serine-Threonine Kinases , Sepsis , Animals , Mice , Intracellular Signaling Peptides and Proteins/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Spleen , Interleukin-6/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Sepsis/drug therapy , Pyridines/metabolism , Phosphorylation
...